Reference Section

Sound travels at approximately 343 meters/sec at room temperature. Gravity on Earth is = 9.8 meters/sec² $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ $\frac{1}{2\pi} \sqrt{\frac{g}{l}}$ $f_a = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ $f_b = \frac{1}{2\pi} \sqrt{\frac{3k}{m}}$ $f = \frac{v}{2\pi} \sqrt{\frac{a}{vl}}$ $v = 331 + 0.6t \ m/sec$ c = 0.61r $v = f\lambda$ $\lambda_n = \frac{2L}{n} \ (n = 1, 2, 3 \dots)$ $\lambda_n = \frac{4L}{n} \ (n = 1, 3, 5 \dots)$ $v = \sqrt{T/\mu}$ $f_n = n \frac{v}{2L} = nf_1 \ (n = 1, 2, 3 \dots)$ $f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$ $f_n = n \frac{v}{4L} = nf_1 \ (n = 1, 3, 5 \dots)$ $dB = 10 \ \log_{10} \ (\frac{W}{W_0})$ $dB = 20 \ \log_{10} \ (\frac{p}{p_0})$ $W_0 = 10^{-12} \ W$ $p_0 = 2 \ * 10^{-5} \ N/m^2$ $\mathfrak{C} = 1200 \ \log_{2}(f_1/f_2)$ $\mathfrak{C} = 1200 \ \log_{10}(f_1/f_2) \ / \log_{10}2$ $\log(ab) = \log(a) + \log(b)$ $\log(a/b) = \log(a) - \log(b)$ $\log(x^n) = n\log(x)$ $f' = f_s \ (\frac{v+v_0}{v})$ $f' = f_s \ (\frac{v-v_0}{v+V_s})$ $f' = f_s \ (\frac{v}{v+V_s})$

Sound intensity in a <u>free field</u> is 11 dB down at 1 meter from the source, dropping by 6 dB per doubling of distance. In a <u>hemispheric field</u>, it drops 8 dB at 1 meter and then 6dB per doubling of distance.

(The piano goes down to A0, which is four octaves below A4)

